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An Information Theory of Asset Price Distributions

J. Orlin Grabbe
ABSTRACT

Tha Thetl-Barbosa framework of “rational random behavior" in the theory
of consumer demand involves a decision~maker who minimizes the sum of a loss
functional u and the cost of information ¢(I). The definition of information
I is that used in the information theory literature associated with Shannon,
Wiener, Xullback, and Leibler. The present paper shows such a framework is
appropriate for modelling the behavior of traders in speculative markets who
announce bid-ask prices at which they are willing to trade, Traders-will
announce prices which will be drawa from a probability distribution, the
selection of which is a function of the loss functional u and the cost of
information. The logaormal distribution 1s derived as a special case. It is
shown that the variance of such distributions depends on the marginal cost of
information, but that the kurtosis depends on the shape of the loss
functional. When the loss functional is less convex than a quadratic,

distributious will be leptokurtic.



An Information Theory of Asset Price Distributions

J. Orlin Grahbe

I. Introduction

Why do prices in asset markets have one probability distribution as
opposed to another? The question of what price to announce is the central
problem faced by a trader 1in speculative markets like those for foreign
exchange or eurocurrency deposits, Presumably price annocuncements are based
on rational criteria, and these criteria will determine what distribution a
time series of such prices will exhibit ex post. Why do price distributions
sometimes have a lognormal distribution and sometimes not? Under what
circumstances would we see an exponential or a dirichlet distrihution?

The answer given here is that a trader preselects the probability
distribution from which he will draw prices. The framework assumed is the
same as used by Barbosa (1975} and Theil (1980) in connection with consumer
cﬂoice. Theil derives the normal distribution from a quadratic loss
functional, and Barbosa derives the dirichlet distribution from a different
loss functional. Cruclal to these results is the notion of minimum
information (maximum entropy) as derived from information and communication
theory. 1t should be emphasized at the outset that by “information theory” is
meant the tradition stemming from Shannon (1948), Wiener (1962), and Kullback
and Leibler (1951), and unot the more recent ecouomic tradition, although there
are connections between the two.

In this paper T solve the trader's problem in general form for all
probability distributions with a continuous density., The solution is applied
to some specific cases. The role of "information measure” is clarified, and
the lognormal 1is derived as a minimum information distribution, Though it is

well known in the information theory literature that the normal distribution



occurs as a minimum infsrmztion distribution (Dowson and Wragg, 1973, for
example), it is apparently not known that the same is true for the more
financially-relevant lognormal distribution. Finally, circumstances in which
asset returns will exhi“it leptokurtosis are polnted out. One of these may
provide an explanation for the leptokurtosis typically found in such returns
in financial markets.

It seems appropriate to begin with an extended example. Consider the
traditional story of the Walrasifan auctioneer who announces prices in an
auction getting. Supply and demand, based on the announced price, are
tabulated. If these are not equal, a new price is announced, and the process
continues until an equilibrium 1is reached. Trading then takes place at the
equilibrium price. A real-world example of a Walrasian auctioneer 1is provided
by the twice daily price-fixing in the London gold market. Representatives
from five major trading houses meet at 10:30 A.M. and 3:00 P.M. in the fixing
room at N. M, Rothschild. FEach representative 1s in contact with his firm's
trading room, which has orders collected from its customers all over the world
to buy or sell gold at various prices. An auctioneer calls out a sequence of
prices per ounce of gold, and each of the representatives tabulates the net
amount his firm {is willing to either buy or sell at that price. The price is
fixed when excess demand is zero, Usually the fixing price is established
fairly quickly, but on one occasion in October 1979 it took one hour and
thirty-nine minutes to reach an equilibrium across the five trading houses,

Real-world markets, however, such as those for foreign exchange or
eurocurrency deposits, typically differ from the Walrasian framework in at
least three respects. First, the auctioneer, or trader, announces not one
price, but two: a bid price at which he {s willing to buy and an Efkgg_price

at which he is willing to sell. Second, there is not one trader, but



hundreds, all of which announce prices simultaneously. Thirdly, none of the
traders knows the equilibrium market price prior to trading., Rather, each
trader has to infer the nature of excess demand based on the frequency at
which he is "hit" at the asked price relative to the frequency at which he is
hit at the bid price. Equilibrium is a loecal phenomenon from a trader's
perspective,

Suppose that, within this setting, we {impose the following assumptions,
At any point 1in time, there is a price X such that if a trader calls out bid
and ask prices, Xb; Xg» 8t equal fixed increments 8 from X, then such price
announcements will be optimal according to some objective function. To
§implify the discussion, explicit reference to X =X + § and X, = x - § will
be dropped, and we will say “the trader announces price x,"” where x is the
middle price between Xg»s X%y Therefore, if the trader announces price x = X,
then he is at an optimum, while if he announces x # X, there is a loss
incurred by departure from this optimum. Our first assumption, then, is the

exlstence of suech a losg functional u:
u = u(x, ;) .

Secondly, assume that the price x the trader announces will be drawn from
some probability distribution F(x). Our objective 1s to determine what
probability distribution the trader will use to generate price announcements,
given his loss functional u(x, ¥). Our problem is not, however, sufficiently
well structured at this point to allow us to answer this question. We have to
introduce the notion of Information, The sequence of prices the trader calls
out will be based on iInformation ahout the location of the optimal price X,
What, precisely, do we mean by information in this context? Let us make a

brief digression 1nto information theory.
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The definition of information occurs in the literature on information
theory in association with discrete and continucus probabilities, Let X he 3
randor variable that takes on valuas X; with probabilities Py, 1 =1, .. .,
1. Then the information of X, 5(X), defined as the negative of the discrete
entropy of Shannon (1948), is

5(X) = piln P, .

=1 1

B g Bifen

This has a clear interpretation as a measure of the sharpness of the
distribution, Since S(X) takes a maximum value of 0 when one Py is equal to
one and all others are zero,1 and a minimum value of -ln n when all
prebabilities are equal.

Thus, if we were to apply this measure of information to our trader, we
would say that "the trader calls out price x; with the probability py+" Then
the case S{(X) = 0 would correspond to the case the trader called out a singie
one of the prices with certainty. The trader would only do so if he had
maximal knowledge that he was calling out the optimal price., By contrast, the
case S(X) = -ln n would correspond to the case that the trader would call out
any one of the prices with equal probability. This would mean that the trader
had no knowledge to indicate that one price was hetter than another.

The information § is defined for random variables with a discrete
distribution. But we may extend the Shannon definition in such a way that it
applies to arbitrary distributions. The mathematical procedure for doing so
1s described in Everett (1973)., One such definition for a continuous randonm
variable Y, suggested by Shannon as well as Wiener (1961), 1is

W(Y) = [ f(y)in £(y)dy
T



where r {s the sample space. When r is a finite interval [a, h] of the real
line, the distributinn having the smallest amount of information is simply the
uniform distribution, Again we note that minimal information in this context
would imply the trader has no knowledge that suggests a price selected from
one point in the interval is superior to any other point. By contrast,
greater knowledge would enahle the trader to concentrate his price drawings in
a segment of the interval,

An axlomatic characterization of W(Y) may be found in Campbell (1972), A
principal difference between the discrete information S and the continuous
information W, as noted in Kolmogorov (1956) and Everett (1973), is that W 1is
not invariant to the units used to measure y. That is, W is not invariant to
coordinate transformation in the space of r., This suggests we should use an

"information measure” relevant to the economic problem at hand, and leads to

the following:

Definition: Let X be a random variable over a subset r of the real line
with a continuous density f(x), and let g(x) be a non-negative function
("information measure") such that gy = 0, y € r, implies f(y) = 0. Then the

information Ig(X) (relative to the information measure g{x)) 1s

f{x)
I(X) = frf(x)ln 0y 9% (D)

In particular, we will use the Information measures g(x) = 1, g(x) = %3 giving

Tise to two corresponding definitions of information:
I(X) = fr £(x)1n f(x)dx (24)

I*(X) = fr £(x)In(xf (x))dx . (2B)



Tas idea of using alternative information measures here was inspired by
Ingarden and Kossakowski {1971), who showed that the Poisson distribution
could be derived as a minimum information distribution when a variate, S*(X),
of the discrete information of Shannon 1s used as the definition, namely

§%(X) =L piln(i!pi) .
i=0
Similarly, by using the definition I*(X), T am able in this paper to derive a
class of minimum-information distributions fhat includes the lognormal as a
member, (The “rule" governing the creation of I* may be ascertained from
Lemma 3, below.)

Now we return to the problem faced by our trader. The trader does not
know what the optimal price ¥ is, But he can get an idea, He can ohserve the
relative frequency at which he trades at the bid price versus the asked
price., He can do research on the state of "fundamental” variables that affect
supply and demand. The amount of information he has will be reflected in his
choice of distribution F(x). I will assume throughout the paper that F(x) has
a2 continuous density f(x) dx. Then informat{ion may be measurad by Ig’ and the
cost of obtaining this information by c(Ig). I will also assume that c(Ig) is
differentiable,

Thus the trader's problem is to choose a probability distribution from
which to draw prices. His choice of a density f(x) dx will determine the
expected loss

u = f u(x, x) f(x) dx
r

and the cost of information

c(Ig) = c[ fr f(x) ln-gég% dx) .



If we measure U and c(Ig) in the same units, then the trader's problem may be
represented as
min T+ (I ) . ()
£(x) 8

For the remainder of the paper, any probability distribution whose
density function 1s a solution to (T), for given u and Ig' will be referred to
as a "minimunm ianformation distribution.” In addition, all prices x will be
measured either as deviatioans from the hypothesized optimal value X, or elge
as proportions of %,

Obviously the loss functien u can take many forms. For example, if the
trader has a utility function which is maximized at X, then the loss funection
u may be defined as the excess of the maximum utility level over the level
actually obtained. The forms of u(x) investigated in this paper are

summparized at the beginning of section III.

II. Some Preliminary Lemmas on Minimum Information

We now proceed to some preliminary lemmas that form the basis of the
theorems in Section III. Lemma 2 glves a falrly general solution for the
density function of minimun—-information distributions with continuous
densities. Lemma ] is then used to prove that if a mininum 1aformation
distribution exists, it is ualque. (If u(x) is bounded, it is 2asy to prove
that a minimum information distribution always exists. However, the
functional forms for u(x) that I use later are all unbounded, so I ignore this
special case.) Lemma 3 then demonstrates a correspondence among

transformations of u(x), Ig(X), and the minimum—information density.

Lemma 1: Let r be a subset of the real line, and let u be a nonnegative

function defined on r, such that the iantegral



G(b) = fr e—bu(W)dw

Is finite for any positive b. Then if the equation

has a solution, that solition is unique.

Proof: Rewriting equation 3, we have

0 = G'(b) + uG(b) = jr(g_u(w”e—-bu(w)dw )

b
Multiplying by e u' this becomes

b(ﬁlu(w))d

0 = fr(ﬁlu(w))e W = frV(W)ebv(w)dw

]

F(b), where v(w) = E;u(w) .

Now F'(b)

frvzebvdw > 0, so that ¥ 1is strictly increasing in b. Hence if
F(b) = 0 has a solution, it is a unique solution. But this means

G'(b) + TG(b) = 0 has a unique solution, #

Lemma 2: Let u(x) be a non-negative function of a continuous random
variable X, defined on a subset r of the real line. Then the probability

density function f(x) which minimizes c(Ig) + U, or

cUr £(x)1n g—(.(% dx) + a0 £(x)dx (4)
where G(b) = fr g(x)e«bu(x)dx‘ and where p = éT is the unique solution to

1
gfé?l = ~u , provided such a b exists and G(b) is defined.
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Proof: We may approximate e locally at any point by

f{x) — ;
- dx. We want to maximize -¢ — U subject to
“7—7 A

gix

¢ =ch 4 c'frf(x)ln
frf(x)dx =1 . (3)

Let X be a Lagrange multiplier., We will maximize the Lagrangian using the

well-known inequality that

In x < x-1 1if x # 1

In x = x-1 if = =1

From (4), (5), the Lagrangian L becomes, for AI = Afe',

- 1
L - CO = c'}rf(x)[ln ?Ei; - Al ey u(x)]dx
g(x) —Al_ éT u(x)
= ¢ frf(x)ln[f(x) e dx
“A = —= u(x)
1 L
<eof (e - 1)dx .
“A- —IT u(x)
The equality holds if and only 1f f(x) = g(x)e ¢ . From (5), we then
have
1
A - or ulx) A3
1 =e frg(x)e dx = e GCET) s

provided the integral GC%T) is defined. 1If so, this implies

1
)\l = ln G(C_')

or f(x) =-§£§l— e c! .
G(—
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This latter equation, with (4), gives

1 l

. _ - — u(x) G'(—)
s a0 f(x)dx =4 = / u(x)g(x)e © dx = - lc - .
t 6= r G(<r)

By Lemma 1, if the latter has a solution, {t has a unique solution. Setting

%T‘= b, the theorem is proved. #

Lemaa 3: Let r and r' be subsets of the real line. Let f(x) and h(y) be
continuous functions on r and r', respectively, where h 1s a one-one mapplng
of r' to r, with a continuous derivative h'(y) # 0 on r' and a continuous

inverse h7!, Then for a continuous function u(x) defined on r, if

£%(x) = arg max - 5 ~ c'frf(x) In f(x) dx - fr f(x)u(x)dx ,
f(x)

then the k*(y) such that

1

k*(y) = arg max -~ <o - crfr, k(y) 1n£§$%%7] dy - fr, k(y)ulh(y))dy ,

k(y)
1s k*(y) = £*(h(y) Jh'(y) .

Proof: Suppose the theorem 1s false, Then there exists a k*%(v) such

that

* k*
S o oIl ay 5 -f | ior(y)1a [0

hv(y)]dy

= =/ (I () alex(niy) ) ]ay = =~/ £%5(x)In f*(x)dx .

-1
Now setting k**(y) = k**(h (X)J

1 = f**(x), we obtain a contradiction. #
'(y)  h'(rT(x))
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Comza2nt on Lemma 3: Given a minimum information solutisn for the

informatisn definition I(X) and the loss function u(x), we can {mmediately
find 2 solution for the information definition Ih'(Y) and the loss
funetion uih(y)), provided h(y) satisfies the conditions of the lemma,

I1I. Some Probability Distributions Arising from the Minimum-Information
Hypothesis,

The theorems in this section give the minimum~information distributions
arising from various forms of the loss function u(x)., Theorens ! and 2 use
the information definition I(X) of (2A). The class of continuous
distributions arising from the loss function u(x) = xa,(x # 0, a > 0), vwhere
prices x are measured as deviations from the optinal value X, are called here
"fractional power distributions,” and the general equation for their density
function is given by Theorem l. The exponential and one-sided normal
distributions are members of this class., These distributions would only arise
if a trader always quoted prices that were too high. A related class of ;
continuous distributions are the “fractional-absolute power distributions” of
Theorem 2. These result from the loss function u(x) = [xla, (x real, a > 0),
The double exponential and the normal are members of this class. These
distributions arise if the trader's price quotations are symmetrically
distributed around X.

Using the alternative information definition I*(X) of (2B), Theorem 3
describes the distributions arising from the loss function u(x) = lln(x)la,
(x 2 0, a > 0), where prices x are now measured as proportions of X. The
lognormal is a member of this class of "log-fractional absolute power
distributions.” These distributions arise when price quotations are

symmetrically high or low as proportions of the optimal value X.
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Theorem l: TIn the notation of Lemma 2, let r = [0,°) and u(x) = x

where a > 0, Then the probability density f(x) which minimlzes e{I} 4+ 1,

[40]

where T(X) = [ £(x) In f(x) dx and 0 ¢ T = J ul(x) f(x) dx 1s
0

0
Q
- X
a cr
f(x) = /a exp ,
(c")™" T(1/a)
where c¢' = o, (That 1s, the marginal cost of information is equal to the

expected value of the loss function multiplied by a.) Distributions with this
density will be referred to as “fractional power distributions.” These

distributions have as their j~th moment (j > 0)

Corollary 1.l: For o = 1, f(x) 1is the exponential distribution

X
1 iy
f(X) =?- exp

with mean c¢' and variance c'2

Corollary 1,2: For o = 2, f(x) is the one-sided normal distribution

2
_ %
i

£(x) = exp

ctn

[ ] T~ T
with second moment %— mean f§~ » and variance ;L (1 - 2/m). (This is the

distribution of Brownian motion reflectad at the origin,)

Proof of Theorem 1: It will be helpful if we first calculate the

@ o
integral f Xke—bx dx, for k > 0. Using the substitutions t = bxa
0
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k+1
< -1
. Jk-atl ot
it = abx dx, and x = o e obtain
o
b
. ] o B
-k -bx I Fa Tt e 1 k+1
BT T Lt e e s e T
° o O -
ab ab
5 ~bx" 1 1
now, in the notation of Lemma 2, we have G(p) = é e dx ='—;T75 F(EJ .
[0 1
A a
o . [ x%7P* 4y rtly
Hence f(x) = —° 75« Thus @ = [ u(x)f(x)dx =2 e T —— - %a
F'($)/ab 0 F(EJ/Qb bFCE)

or b = Substituting_h_back into the expression for f(x), and remembering

=] Ih-'
e

from Lemna 2 that p = %T , 80 that ¢' = ou, we obtain Theorem 1. #

Theorem 2: Let r be the real line and u{x) = leu, where a > (0, Then

the probability density g(x) which minimizes c{1) + U where

I{X) = f g(x)In g(x) dx and 0 ¢ T = f u{x)g(x)dx is

-t

g(x) = Yy £(|x|)

where f(x) 1s given by Theorem 1. Distributions with the density g(x) will be

referred to as “"fractional-absolute power distributions.” These distributions

have as thelr j-th absolute moment i » 0

i+ 1
j/o:r[ ) J

my = T ey

Corollary 2.1: For a = 1, ¢

{(x} 1s the double exponential distribution

Lx|
C'

1
g(x) = e exp
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with first absolute =zoment T = ¢', mean 0, and variance 252 = 2c'2

Corollary 2.2: For a = 2, g(x) is the normal distribution with variance

s— = u and mean 0,

Proof of Theore~ 2: From the proof of Theorem 1 and by symmetry we have

@ o

.tk b |x] 2 k+1 5 1

/ 'x' € dx = —== I'(—=) . Thas G(b) = (<) and
= Eii a ablfa a

ab “
e"le’a _ -} o _
f(x) = « Solving for u = f le f(x)dx we find that U and thus b
1 1/a

have the same values as in the proof of Theorem 1. Substituting the value for

b into f(x), we obtain Theorem 2., #

Theorem 3: Here we consider x measured as a proportion of its optimal
value X. Let r = [0, @) and u(x) = ‘ln(x)la, where o > 0. Then the
probability density function which minimizes c(I*) + U, where

I*(X) = f; f(x)ln{xf(x)]dx and u = f; u(x)f(x)dx is

£(x) =-% 11]6' i l—exp ¢’
(ec) ri=) *

where ¢' = dU. Distributions with this density will be called "log-fractional

absolute power distributions."”

Corollary 3.1: When a = 2, f(x) 1is the lognormal distribution
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#ith mean 0, and where ¢'/2 = T 15 the variance of 1n =,

Proof of Theorem 3: The function h{y) = In y on v ¢ {0, =) 1s

continuous, with a derivative h'(y) =-$ # 0, and maps [0, ®) to the entire
real line. It has a continuous inverse hul(x) = ex, X real. Hence Theaorem 3

follows from Theoren 2, hy application of Lemma 3. #

IV. Leptokurtosis in the Distribution of First-Differences in Log Prices.

One fairly well establighed empirical fact is that 1in many speculative
markets log differences ia prices are roughly symmetric, but exhibit a marked
degree of 1eptokurtosis.2 In one example, the kurtosigs parameter (X) for the
distribution of log changes in daily exchange rate data was found to have a
value of about ¥ = IO.3 This contrasts with the normal distribution where X
has the value K = 3,

One possible explanation is found in Theorem 2. 1f we consider this
class of minimum-information distributions, of which the normal 15 one member,
the kurtosls parameter is easily calculated to be

_ I(5/a)r(1/a)

K
[r(B/a)]z

Values of K for selected values of o are given bhelow:

o K

4 2.2
3 2.4
2 3

1 5
2/3 12,3
1/2 | 25.2

The normal is the case a = 2, For values of « greater than 2, the minimum-

information distribution is platykurtic, while for values less than 2, the



mininua-information distribution is lentokurtic., The previously mentioned
enpirical finding of X = 10 corresponds to a value of o less than 1.

If log changes in prices correspond to a Theorem 2 distribution, then
relative price levels correspond to a Theorem 3 distribution. The associated
loss function u{x) = lln X’a is symmetric about x=1. Thus, viewing x as the
price announced by a trader, where x is measured as a proportion of the
optimal price ¥, this class of distributions corresponds to the case the loss
function assigns equal weights to proportional departures from x, whether up
or down. The rate at which welght accumulates in either direction from x=1 is
governed by @. As seen in the table below, for a=l, the loss function u(x)
increases from 1 to 8, and from 1 to 1/8, in uniform increments of .693.

For a>1, u(x) gives proportional increments in x more weight the further away

X 1/8 /4 /2 1 2 4 8

[t x|® 4324 1922 480 0 480 1.e22 4.2

u(x) { |1n x| 2,079  1.386  .693 0 .693  1.386  2.079
1

10 x| 2 142 1177 .83 0 .83 1.177  1.442

from the optimal price of x=1, while for a{l, proportional increments are
glven less weight the further away from the optimal price of x=1.

Intuitively, we might expect the loss functional to give less welght to
proportional increments that are further out, and hence a to be less than 1.
Why? Simply because if the price 1s nuch too low or too high, the trader will
be hit almost surely_gglz_on his bid side or his ask side, and the trading
volume will be such that his losses will not be proportionately magnified by
an even higher or lower price. The distribution is then necesgsarily

leptokurtic. In any case, if we restrict our attention to the family of
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Theorea 3 of which the lognornal is a member, leptokurtosis in the
distribution of log changes will result {f « < 2; that is, if the loss

functional is less convex than the quadratic.

V. Comment and Conclusion.

This paper has described a rational theory of price distributions in a
speculative market such as that for foreign exchange. The distribution of
such prices 1s not assigned by God or nature from outside the system. Rather,
these prices are announced by traders who use rational criteria In making
their decisions. The procedure for doing so was modelled here as the
selection of a probability distribution from which price drawings are made.

Conceptually there is an optimal price X, unknown to the trader, such
that, if it were announced at the current time, would maximize some objective
function (making money, say). The hypothesized existence of this objective
function implies the trader faces a loss functional, a function of the
announced price, which represents departure from the optimum whenever the
announced price 1s not the optimal price. 1In addition, 1t is assumed that the
trader can gain information about the location of thig optimal price, and the
more information the trader has will be reflected in the shape of the
probability distribution from which prices are drawn.

For the loss functionals studied in this paper, the trader will acquire
information up to the point where the marginal cost of the information ¢' is a

' = ou, where o ig a parameter

scalar multiple of the expected loss 1W: ¢
governing the steepness of the tails of the convex loss functional. For

example, it was seen that for the loss functional y(x) = Iln(x)’? where x 1is
the announced price expressed as a proportion of the optimal price, and for

@ = 2, the resulting distribution was the lognormal distribution. If « > 2,

the resulting distribution 1is platykurtic, while for a < 2, it 1is

i T o —— s
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lentowartie, 1In addition, the variance of In(x} is determined precisely by
the marzinal cost of information, ¢'. Thus, if the marginal cost of
information changes over time, this implies immadiately a time-varying
variance, And if the narginal cost of {information is low, the distributieon
will be concentrated around the optimal price %.

In conclusion, then, we see that the dispersion of price announcements,
as measured by the variance, is governed by the marginal cost of
information. But the kurtosis--the allocation of weight to the center and
tails of the distribution, as compared to the intermediate ranges--is governed
by the convexity of the loss functional. Thus the fundamental shape of price
distributions in speculative markets would seem to be determined by simple,

rational choice.
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Footnotes

1. By convention, piln P; = 0 when p; = 0.
2. Extensive references are cited in Grabbe (1981),
3. In Grabbe (1981). Daily changes in the logarithm of the dollar—DM spot

exchange rate over the period July 1973 to June 1979 had a sample kurtosis of

11.88. TFor one-month forward rates, the value was 9.64.



10.

11.

12,

13.
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